Zusammenfassung
Dieses Übersichtsreferat fasst den derzeitigen Kenntnisstand zum therapeutischen Einsatz
der repetitiven transkraniellen Magnetstimulation (rTMS) in der Neurologie zusammen.
Zunächst beschreiben wir die derzeit bekannten neuromodulatorischen Effekte der rTMS
im gesunden Gehirn und leiten daraus Konzepte für den therapeutischen Einsatz der
rTMS bei neurologischen Erkrankungen ab. Es folgt eine Zusammenfassung der Studien,
welche die rTMS bei Patienten mit Morbus Parkinson, chronischen Schmerzen oder Tinnitus
eingesetzt haben, um eine motorische oder sensorische Dysfunktion zu behandeln. Anhand
dieser Beispiele werden die Grenzen der derzeitigen Therapieversuche dargelegt. Als
Ausblick werden Forschungsansätze aufgezeigt, die helfen können, die neurobiologischen
Effekte der rTMS im erkrankten Gehirn besser zu verstehen und die therapeutische Effizienz
der rTMS zu steigern.
Abstract
This paper reviews the current knowledge regarding the therapeutic application of
repetitive transcranial magnetic stimulation (rTMS) in the field of clinical neurology.
First, we summarize the neuromodulatory effects of rTMS in the healthy brain and outline
the concepts behind the therapeutic use of rTMS. Second, we review clinical trials
that have used rTMS to improve motor dysfunction in patients with Parkinson's disease
or to reduce sensory dysfunction in patients with chronic pain or tinnitus. Based
on this work, we discuss the main limitations of current attempts to treat neurological
disorders with rTMS. Finally, we outline future avenues of research that will provide
deeper insights into the neurobiological changes induced by rTMS and help to increase
the therapeutic efficacy of rTMS.
Key words
Neuromodulation - Parkinson's disease - pain - tinnitus - therapy - transcranial magnetic
stimulation
Literatur
1
Hallett M.
Transcranial magnetic stimulation and the human brain.
Nature.
2000;
406
147-150
2
Siebner H R, Rothwell J.
Transcranial magnetic stimulation: new insights into representational cortical plasticity.
Exp Brain Res.
2003;
148
1-16
3 Martin J L, Barbanoj M J, Schlaepfer T E, Clos S, Perez V, Kulisevsky J, Gironell A.
Transcranial magnetic stimulation for treating depression. Cochrane Database Syst
Rev 2002 CD003493
4
Martin J L, Barbanoj M J, Schlaepfer T E, Thompson E, Perez V, Kulisevsky J.
Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic
review and meta-analysis.
Br J Psychiatry.
2003;
182
480-491
5
Couturier J L.
Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment
of depression: a systematic review and meta-analysis.
J Psychiatry Neurosci.
2005;
30
83-90
6
Wassermann E M.
Risk and safety of repetitive transcranial magnetic stimulation: report and suggested
guidelines from the International Workshop on the Safety of Repetitive Transcranial
Magnetic Stimulation, June 5 - 7, 1996.
Electroencephalogr Clin Neurophysiol.
1998;
108
1-16
7
Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A.
Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.
Clin Neurophysiol.
2000;
111
800-805
8
Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A.
Interindividual variability of the modulatory effects of repetitive transcranial magnetic
stimulation on cortical excitability.
Exp Brain Res.
2000;
133
425-430
9
Rizzo V, Siebner H R, Modugno N, Pesenti A, Munchau A, Gerschlager W, Webb R M, Rothwell J C.
Shaping the excitability of human motor cortex with premotor rTMS.
J Physiol.
2004;
554
483-495
10
Boroojerdi B, Meister I G, Foltys H, Sparing R, Cohen L G, Topper R.
Visual and motor cortex excitability: a transcranial magnetic stimulation study.
Clin Neurophysiol.
2002;
113
1501-1504
11
Touge T, Gerschlager W, Brown P, Rothwell J C.
Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes
in the efficacy of cortical synapses?.
Clin Neurophysiol.
2001;
112
2138-2145
12
Peinemann A, Reimer B, Loer C, Quartarone A, Munchau A, Conrad B, Siebner H R.
Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold
5 Hz repetitive TMS to the primary motor cortex.
Clin Neurophysiol.
2004;
115
1519-1526
13
Huang Y Z, Edwards M J, Rounis E, Bhatia K P, Rothwell J C.
Theta burst stimulation of the human motor cortex.
Neuron.
2005;
45
201-206
14
Sommer M, Lang N, Tergau F, Paulus W.
Neuronal tissue polarization induced by repetitive transcranial magnetic stimulation?.
Neuroreport.
2002;
13
809-811
15
Baumer T, Lange R, Liepert J, Weiller C, Siebner H R, Rothwell J C, Munchau A.
Repeated premotor rTMS leads to cumulative plastic changes of motor cortex excitability
in humans.
Neuroimage.
2003;
20
550-560
16
Chen R, Classen J, Gerloff C, Celnik P, Wassermann E M, Hallett M, Cohen L G.
Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.
Neurology.
1997;
48
1398-1403
17
Pascual-Leone A, Valls-Sole J, Brasil-Neto J P, Cammarota A, Grafman J, Hallett M.
Akinesia in Parkinson's disease. II. Effects of subthreshold repetitive transcranial
motor cortex stimulation.
Neurology.
1994;
44
892-898
18
Lazzaro V Di, Oliviero A, Mazzone P, Pilato F, Saturno E, Dileone M, Insola A, Tonali P A,
Rothwell J C.
Short-term reduction of intracortical inhibition in the human motor cortex induced
by repetitive transcranial magnetic stimulation.
Exp Brain Res.
2002;
147
108-113
19
Quartarone A, Bagnato S, Rizzo V, Morgante F, Santaposangelo A, Battaglia F, Messina C,
Siebner H R, Girlanda P.
Distinct changes in cortical and spinal excitability following high-frequency repetitive
TMS to the human motor cortex.
Exp Brain Res.
2005;
161
114-124
20
Gilio F, Rizzo V, Siebner H R, Rothwell J C.
Effects on the right motor hand-area excitability produced by low-frequency rTMS over
human contralateral homologous cortex.
J Physiol.
2003;
551
563-573
21
Tsuji T, Rothwell J C.
Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs
and transcortical reflex excitability in humans.
J Physiol.
2002;
540
367-376
22
Boroojerdi B, Prager A, Muellbacher W, Cohen L G.
Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation.
Neurology.
2000;
54
1529-1531
23
Siebner H R, Lang N, Rizzo V, Nitsche M A, Paulus W, Lemon R N, Rothwell J C.
Preconditioning of low-frequency repetitive transcranial magnetic stimulation with
transcranial direct current stimulation: evidence for homeostatic plasticity in the
human motor cortex.
J Neurosci.
2004;
24
3379-3385
24
Lang N, Siebner H R, Ernst D, Nitsche M A, Paulus W, Lemon R N, Rothwell J C.
Preconditioning with transcranial direct current stimulation sensitizes the motor
cortex to rapid-rate transcranial magnetic stimulation and controls the direction
of after-effects.
Biol Psychiatry.
2004;
56
634-639
25
Ziemann U, Ilic T V, Pauli C, Meintzschel F, Ruge D.
Learning modifies subsequent induction of long-term potentiation-like and long-term
depression-like plasticity in human motor cortex.
J Neurosci.
2004;
24
1666-1672
26
Fierro B, Brighina F, Vitello G, Piazza A, Scalia S, Giglia G, Daniele O, Pascual-Leone A.
Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation
on visual cortex of healthy subjects undergoing light deprivation.
J Physiol.
2005;
565
659-665
27
Valero-Cabre A, Oliveri M, Gangitano M, Pascual-Leone A.
Modulation of spinal cord excitability by subthreshold repetitive transcranial magnetic
stimulation of the primary motor cortex in humans.
Neuroreport.
2001;
12
3845-3848
28
Gerschlager W, Siebner H R, Rothwell J.
Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor
cortex.
Neurology.
2001;
57
449-455
29
Munchau A, Bloem B R, Irlbacher K, Trimble M R, Rothwell J C.
Functional connectivity of human premotor and motor cortex explored with repetitive
transcranial magnetic stimulation.
J Neurosci.
2002;
22
554-561
30
Siebner H R, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, Drzezga A, Conrad B,
Bartenstein P.
Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic
study.
Neurology.
2000;
54
956-963
31
Siebner H R, Filipovic S R, Rowe J B, Cordivari C, Gerschlager W, Rothwell J C, Frackowiak R S,
Bhatia K P.
Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive
TMS of the dorsal premotor cortex.
Brain.
2003;
126
2710-2725
32
Lee L, Siebner H R, Rowe J B, Rizzo V, Rothwell J C, Frackowiak R S, Friston K J.
Acute remapping within the motor system induced by low-frequency repetitive transcranial
magnetic stimulation.
J Neurosci.
2003;
23
5308-5318
33
Strafella A P, Paus T, Barrett J, Dagher A.
Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces
dopamine release in the caudate nucleus.
J Neurosci.
2001;
21
RC157
34
Strafella A P, Paus T, Fraraccio M, Dagher A.
Striatal dopamine release induced by repetitive transcranial magnetic stimulation
of the human motor cortex.
Brain.
2003;
126
2609-2615
35
Chen W H, Mima T, Siebner H R, Oga T, Hara H, Satow T, Begum T, Nagamine T, Shibasaki H.
Low-frequency rTMS over lateral premotor cortex induces lasting changes in regional
activation and functional coupling of cortical motor areas.
Clin Neurophysiol.
2003;
114
1628-1637
36
Rounis E, Lee L, Siebner H R, Rowe J B, Friston K J, Rothwell J C, Frackowiak R S.
Frequency specific changes in regional cerebral blood flow and motor system connectivity
following rTMS to the primary motor cortex.
Neuroimage.
2005;
26
164-176
37
Siebner H R, Tormos J M, Ceballos-Baumann A O, Auer C, Catala M D, Conrad B, Pascual-Leone A.
Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in
writer's cramp.
Neurology.
1999;
52
529-537
38
Siebner H R, Auer C, Ceballos-Baumann A, Conrad B.
Has repetitive transcranial magnetic stimulation of the primary motor hand area a
therapeutic application in writer's cramp?.
Electroencephalogr Clin Neurophysiol.
1999;
51, Supplement
265-275
39
Tergau F, Naumann U, Paulus W, Steinhoff B J.
Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy.
Lancet.
1999;
353
2209
40
Gironell A, Kulisevsky J, Lorenzo J, Barbanoj M, Pascual-Sedano B, Otermin P.
Transcranial magnetic stimulation of the cerebellum in essential tremor: a controlled
study.
Arch Neurol.
2002;
59
413-417
41
Siebner H R, Rossmeier C, Mentschel C, Peinemann A, Conrad B.
Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic
stimulation of the primary motor hand area in Parkinson's disease.
J Neurol Sci.
2000;
178
91-94
42
Siebner H R, Mentschel C, Auer C, Conrad B.
Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia
in Parkinson's disease.
Neuroreport.
1999;
10
589-594
43
Khedr E M, Ahmed M A, Fathy N, Rothwell J C.
Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic
stroke.
Neurology.
2005;
65
466-468
44
Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen L G.
Transcallosal inhibition in chronic subcortical stroke.
Neuroimage.
2005;
Epub ahead of print
45
Thut G, Nietzel A, Pascual-Leone A.
Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention.
Cereb Cortex.
2005;
15
628-638
46
Brighina F, Bisiach E, Oliveri M, Piazza A, Bua V La, Daniele O, Fierro B.
1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates
contralesional visuospatial neglect in humans.
Neurosci Lett.
2003;
336
131-133
47
Oliveri M, Bisiach E, Brighina F, Piazza A, Bua V La, Buffa D, Fierro B.
rTMS of the unaffected hemisphere transiently reduces contralesional visuospatial
hemineglect.
Neurology.
2001;
57
1338-1340
48
Quartarone A, Bagnato S, Rizzo L, Siebner H R, Dattola V, Scalfari A, Morgante F,
Battaglia F, Romano M, Girlanda P.
Abnormal associative plasticity of the human motor cortex in writer's cramp.
Brain.
2003;
126
2586-2596
49
Quartarone A, Rizzo V, Bagnato S, Morgante F, Sant'Angelo A, Romano M, Crupi D, Girlanda P,
Rothwell J C, Siebner H R.
Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand
dystonia.
Brain.
2005;
128
1943-1950
50
Mir P, Matsunaga K, Gilio F, Quinn N P, Siebner H R, Rothwell J C.
Dopaminergic drugs restore facilitatory premotor-motor interactions in Parkinson disease.
Neurology.
2005;
64
1906-1912
51
Buhmann C, Gorsler A, Baumer T, Hidding U, Demiralay C, Hinkelmann K, Weiller C, Siebner H R,
Munchau A.
Abnormal excitability of premotor-motor connections in de novo Parkinson's disease.
Brain.
2004;
127
2732-2746
52
Braak H, Ghebremedhin E, Rub U, Bratzke H, Tredici K Del.
Stages in the development of Parkinson's disease-related pathology.
Cell Tissue Res.
2004;
318
121-134
53
Bergman H, Deuschl G.
Pathophysiology of Parkinson's disease: from clinical neurology to basic neuroscience
and back.
Mov Disord.
2002;
17, Suppl 3
S28-40
54
Agid Y, Arnulf I, Bejjani P, Bloch F, Bonnet A M, Damier P, Dubois B, Francois C,
Houeto J L, Iacono D, Karachi C, Mesnage V, Messouak O, Vidailhet M, Welter M L, Yelnik J.
Parkinson's disease is a neuropsychiatric disorder.
Adv Neurol.
2003;
91
365-370
55
Brooks D J.
Cerebral blood flow activation studies in Parkinson's disease.
Adv Neurol.
2001;
86
225-235
56
Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann A O.
Event-related functional magnetic resonance imaging in Parkinson's disease before
and after levodopa.
Brain.
2001;
124
558-570
57
Jenkins I H, Fernandez W, Playford E D, Lees A J, Frackowiak R S, Passingham R E,
Brooks D J.
Impaired activation of the supplementary motor area in Parkinson's disease is reversed
when akinesia is treated with apomorphine.
Ann Neurol.
1992;
32
749-757
58
Jahanshahi M, Jenkins I H, Brown R G, Marsden C D, Passingham R E, Brooks D J.
Self-initiated versus externally triggered movements. I. An investigation using measurement
of regional cerebral blood flow with PET and movement-related potentials in normal
and Parkinson's disease subjects.
Brain.
1995;
118
913-933
59
Playford E D, Jenkins I H, Passingham R E, Nutt J, Frackowiak R S, Brooks D J.
Impaired mesial frontal and putamen activation in Parkinson's disease: a positron
emission tomography study.
Ann Neurol.
1992;
32
151-161
60
Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I,
Montastruc J L, Chollet F, Rascol O.
Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional
MRI study.
Brain.
2000;
123
394-403
61
Buhmann C, Glauche V, Sturenburg H J, Oechsner M, Weiller C, Buchel C.
Pharmacologically modulated fMRI - cortical responsiveness to levodopa in drug-naive
hemiparkinsonian patients.
Brain.
2003;
126
451-461
62
Ceballos-Baumann A O, Boecker H, Bartenstein P, Falkenhayn I von, Riescher H, Conrad B,
Moringlane J R, Alesch F.
A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson
disease: enhanced movement-related activity of motor-association cortex and decreased
motor cortex resting activity.
Arch Neurol.
1999;
56
997-1003
63
Limousin P, Greene J, Pollak P, Rothwell J, Benabid A L, Frackowiak R.
Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum
stimulation in Parkinson's disease.
Ann Neurol.
1997;
42
283-291
64
Ridding M C, Inzelberg R, Rothwell J C.
Changes in excitability of motor cortical circuitry in patients with Parkinson's disease.
Ann Neurol.
1995;
37
181-188
65
Lewis G N, Byblow W D.
Altered sensorimotor integration in Parkinson's disease.
Brain.
2002;
125
2089-2099
66
Cantello R, Gianelli M, Bettucci D, Civardi C, Angelis M S De, Mutani R.
Parkinson's disease rigidity: magnetic motor evoked potentials in a small hand muscle.
Neurology.
1991;
41
1449-1456
67
Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M.
Motor cortical inhibition and the dopaminergic system. Pharmacological changes in
the silent period after transcranial brain stimulation in normal subjects, patients
with Parkinson's disease and drug-induced parkinsonism.
Brain.
1994;
117
317-323
68
Delwaide P J, Olivier E.
Conditioning transcranial cortical stimulation (TCCS) by exteroceptive stimulation
in parkinsonian patients.
Adv Neurol.
1990;
53
175-181
69
Valls-Sole J, Pascual-Leone A, Brasil-Neto J P, Cammarota A, McShane L, Hallett M.
Abnormal facilitation of the response to transcranial magnetic stimulation in patients
with Parkinson's disease.
Neurology.
1994;
44
735-741
70
Chen R, Kumar S, Garg R R, Lang A E.
Impairment of motor cortex activation and deactivation in Parkinson's disease.
Clin Neurophysiol.
2001;
112
600-607
71
Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B.
Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson's
disease.
Ann Neurol.
1991;
30
365-374
72 Holler I, Siebner H R, Cunnington R, Gerschlager W. 5 Hz repetitive TMS increases
anticipatory motor activity in the human cortex. Neurosci Lett 2005 in press
73
Siebner H R, Mentschel C, Auer C, Lehner C, Conrad B.
Repetitive transcranial magnetic stimulation causes a short-term increase in the duration
of the cortical silent period in patients with Parkinson's disease.
Neurosci Lett.
2000;
284
147-150
74 Siebner H R.
Treatment of movement disorders. In: Hallett M, Chokroverty S (eds) Magnetic Stimulation in clinical Neurophysiology. Oxford;
Butterworth & Heinemann 2004: 223-238
75
Canavero S, Paolotti R.
Extradural motor cortex stimulation for advanced Parkinson's disease: case report.
Mov Disord.
2000;
15
169-171
76
Canavero S, Paolotti R, Bonicalzi V, Castellano G, Greco-Crasto S, Rizzo L, Davini O,
Zenga F, Ragazzi P.
Extradural motor cortex stimulation for advanced Parkinson disease: report of two
cases.
J Neurosurgery.
2002;
97
1208-1211
77
Lavano A, Piragine G, Iofrida G, Signorelli C D.
Preliminary experience with unilateral low frequency epidural motor cortex stimulation
in advanced Parkinson's disease.
Parkinsonism and related disorders.
2005;
11
200
78
Valzania F, Nassetti S-A, Tropeani A, Sturiale C, Michelucci R, Tassinari C A.
Motor cortex stimulation in Parkinson's disease (PD).
Parkinsonism and related disorders.
2005;
11
199-200
79
Tergau F, Wassermann E M, Paulus W, Ziemann U.
Lack of clinical improvement in patients with PD after low and high frequency repetitive
transcranial magnetic stimulation.
Electroencephalogr Clin Neurophysiol.
1999;
51
281-288
80
Siebner H R, Löer C, Mentschel C, Weindl D, Conrad B.
Repetitive transcranial magnetic stimulation in Parkinson's disease and focal dystonia.
Clinical Neurophysiology.
2002;
Supplement 54
399-409
81
Groot M de, Hermann W, Steffen J, Wagner A, Grahmann F.
Contralateral and ipsilateral repetitive transcranial magnetic stimulation in Parkinson
patients.
Nervenarzt.
2001;
72
932-938
82
Pascual-Leone Pascual A, Catala D.
Lasting beneficial effect of rapid-rate transcranial magnetic stimulation on slowness
in Parkinson's disease.
Neurology.
1995;
45
A 315
83
Raison F Von, Drouot X, Nguyen J P. et al .
The clinical effects of repetitive stimulation on PD depend on stimulation frequency.
Neurology.
2000;
54
A281
84
Lefaucheur J P, Drouot X, Raison F Von, Menard-Lefaucheur I, Cesaro P, Nguyen J P.
Improvement of motor performance and modulation of cortical excitability by repetitive
transcranial magnetic stimulation of the motor cortex in Parkinson's disease.
Clin Neurophysiol.
2004;
115
2530-2541
85
Boylan L S, Pullman S L, Lisanby S H, Spicknall K E, Sackeim H A.
Repetitive transcranial magnetic stimulation to SMA worsens complex movements in Parkinson's
disease.
Clin Neurophysiol.
2001;
112
259-264
86
Koch G, Oliveri M, Brusa L, Stanzione P, Torriero S, Caltagirone C.
High-frequency rTMS improves time perception in Parkinson disease.
Neurology.
2004;
63
2405-2406
87
Koch G, Brusa L, Caltagirone C, Peppe A, Oliveri M, Stanzione P, Centonze D.
rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson
disease.
Neurology.
2005;
65
623-625
88
Fregni F, Santos C M, Myczkowski M L, Rigolino R, Gallucci-Neto J, Barbosa E R, Valente K D,
Pascual-Leone A, Marcolin M A.
Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the
treatment of depression in patients with Parkinson's disease.
J Neurol Neurosurg Psychiatry.
2004;
75
1171-1174
89
Boggio P S, Fregni F, Bermpohl F, Mansur C G, Rosa M, Rumi D O, Barbosa E R, Odebrecht
Rosa M, Pascual-Leone A, Rigonatti S P, Marcolin M A, Araujo Silva M T.
Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson's
disease and concurrent depression.
Mov Disord.
2005;
20
1178-1184
90
Mally J, Stone T W.
Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation.
J Neurol Sci.
1999;
162
179-184
91
Mally J, Stone T W.
Therapeutic and „dose-dependent” effect of repetitive microelectroshock induced by
transcranial magnetic stimulation in Parkinson's disease.
J Neurosci Res.
1999;
57
935-940
92
Mally J, Farkas R, Tothfalusi L, Stone T W.
Long-term follow-up study with repetitive transcranial magnetic stimulation (rTMS)
in Parkinson's disease.
Brain Res Bull.
2004;
64
259-263
93
Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H.
Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in
Parkinson's disease.
J Neurol.
2001;
248, Suppl 3
III48-52
94
Okabe S, Ugawa Y, Kanazawa I.
0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared
to a realistic sham stimulation in Parkinson's disease.
Mov Disord.
2003;
18
382-388
95
Khedr E M, Farweez H M, Islam H.
Therapeutic effect of repetitive transcranial magnetic stimulation on motor function
in Parkinson's disease patients.
Eur J Neurol.
2003;
10
567-572
96
Peyron R, Laurent B, Garcia-Larrea L.
Functional imaging of brain responses to pain. A review and meta-analysis (2000).
Neurophysiol Clin.
2000;
30
263-288
97
Price D D.
Psychological and neural mechanisms of the affective dimension of pain.
Science.
2000;
288
1769-1772
98
Ploner M, Gross J, Timmermann L, Schnitzler A.
Cortical representation of first and second pain sensation in humans.
Proc Natl Acad Sci U S A.
2002;
99
12444-12448
99
Ploghaus A, Becerra L, Borras C, Borsook D.
Neural circuitry underlying pain modulation: expectation, hypnosis, placebo.
Trends Cogn Sci.
2003;
7
197-200
100
Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle T R.
Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain
during pain - an fMRI analysis.
Pain.
2004;
109
399-408
101
Rainville P, Carrier B, Hofbauer R K, Bushnell M C, Duncan G H.
Dissociation of sensory and affective dimensions of pain using hypnotic modulation.
Pain.
1999;
82
159-171
102
Hutchison W D, Davis K D, Lozano A M, Tasker R R, Dostrovsky J O.
Pain-related neurons in the human cingulate cortex.
Nat Neurosci.
1999;
2
403-405
103
Koski L, Paus T.
Functional connectivity of the anterior cingulate cortex within the human frontal
lobe: a brain-mapping meta-analysis.
Exp Brain Res.
2000;
133
55-65
104
Peyron R, Garcia-Larrea L, Deiber M P, Cinotti L, Convers P, Sindou M, Mauguiere F,
Laurent B.
Electrical stimulation of precentral cortical area in the treatment of central pain:
electrophysiological and PET study.
Pain.
1995;
62
275-286
105
Kakigi R, Inui K, Tamura Y.
Electrophysiological studies on human pain perception.
Clin Neurophysiol.
2005;
116
743-763
106
Tamura Y, Okabe S, Ohnishi T, Saito D N, Arai N, Mochio S, Inoue K, Ugawa Y.
Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced
by capsaicin.
Pain.
2004;
107
107-115
107
Tamura Y, Hoshiyama M, Inui K, Nakata H, Qiu Y, Ugawa Y, Inoue K, Kakigi R.
Facilitation of A[delta]-fiber-mediated acute pain by repetitive transcranial magnetic
stimulation.
Neurology.
2004;
62
2176-2181
108
Summers J, Johnson S, Pridmore S, Oberoi G.
Changes to cold detection and pain thresholds following low and high frequency transcranial
magnetic stimulation of the motor cortex.
Neurosci Lett.
2004;
368
197-200
109
Graff-Guerrero A, Gonzalez-Olvera J, Fresan A, Gomez-Martin D, Carlos Mendez-Nunez J,
Pellicer F.
Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases
tolerance to human experimental pain.
Brain Res Cogn Brain Res.
2005;
25
153-160
110
Lefaucheur J P, Drouot X, Keravel Y, Nguyen J P.
Pain relief induced by repetitive transcranial magnetic stimulation of precentral
cortex.
Neuroreport.
2001;
12
2963-2965
111
Lefaucheur J P, Drouot X, Nguyen J P.
Interventional neurophysiology for pain control: duration of pain relief following
repetitive transcranial magnetic stimulation of the motor cortex.
Neurophysiol Clin.
2001;
31
247-252
112
Rollnik J D, Wustefeld S, Dauper J, Karst M, Fink M, Kossev A, Dengler R.
Repetitive transcranial magnetic stimulation for the treatment of chronic pain - a
pilot study.
Eur Neurol.
2002;
48
6-10
113
Pleger B, Janssen F, Schwenkreis P, Volker B, Maier C, Tegenthoff M.
Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception
in complex regional pain syndrome type I.
Neurosci Lett.
2004;
356
87-90
114
Canavero S, Bonicalzi V, Dotta M, Vighetti S, Asteggiano G, Cocito D.
Transcranial magnetic cortical stimulation relieves central pain.
Stereotact Funct Neurosurg.
2002;
78
192-196
115
Lefaucheur J P.
Transcranial magnetic stimulation in the management of pain.
Suppl Clin Neurophysiol.
2004;
57
737-748
116
Lefaucheur J P, Drouot X, Menard-Lefaucheur I, Zerah F, Bendib B, Cesaro P, Keravel Y,
Nguyen J P.
Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends
on the origin and the site of pain.
J Neurol Neurosurg Psychiatry.
2004;
75
612-616
117
Khedr E M, Kotb H, Kamel N F, Ahmed M A, Sadek R, Rothwell J C.
Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic
stimulation in central and peripheral neuropathic pain.
J Neurol Neurosurg Psychiatry.
2005;
76
833-838
118
Lefaucheur J P, Drouot X, Menard-Lefaucheur I, Nguyen J P.
Neuropathic pain controlled for more than a year by monthly sessions of repetitive
transcranial magnetic stimulation of the motor cortex.
Neurophysiol Clin.
2004;
34
91-95
119
Brighina F, Piazza A, Vitello G, Aloisio A, Palermo A, Daniele O, Fierro B.
rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study.
J Neurol Sci.
2004;
227
67-71
120
Heller A J.
Classification and epidemiology of tinnitus.
Otolaryngol Clin North Am.
2003;
36
239-248
121
Dobie R A.
Depression and tinnitus.
Otolaryngol Clin North Am.
2003;
36
383-388
122
Eggermont J J, Roberts L E.
The neuroscience of tinnitus.
Trends Neurosci.
2004;
27
676-682
123
Melcher J R, Sigalovsky I S, Guinan Jr J J, Levine R A.
Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal
inferior colliculus activation.
J Neurophysiol.
2000;
83
1058-1072
124
Giraud A L, Chery-Croze S, Fischer G, Fischer C, Vighetto A, Gregoire M C, Lavenne F,
Collet L.
A selective imaging of tinnitus.
Neuroreport.
1999;
10
1-5
125
Lockwood A H, Wack D S, Burkard R F, Coad M L, Reyes S A, Arnold S A, Salvi R J.
The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze.
Neurology.
2001;
56
472-480
126
Langguth B, Eichhammer P, Zowe M, Kleinjung T, Jacob P, Binder H, Sand P, Hajak G.
Altered motor cortex excitability in tinnitus patients: a hint at crossmodal plasticity.
Neurosci Lett.
2005;
380
326-329
127
Mulheran M.
The effects of quinine on cochlear nerve fibre activity in the guinea pig.
Hear Res.
1999;
134
145-152
128 Kiang N Y, Moxon E C, Levine R A.
Auditory-nerve activity in cats with normal and abnormal cochleas. In: Sensorineural hearing loss. Ciba Found Symp 1970: 241-273
129
Jastreboff P J, Sasaki C T.
Salicylate-induced changes in spontaneous activity of single units in the inferior
colliculus of the guinea pig.
J Acoust Soc Am.
1986;
80
1384-1391
130
Eggermont J J, Kenmochi M.
Salicylate and quinine selectively increase spontaneous firing rates in secondary
auditory cortex.
Hear Res.
1998;
117
149-160
131
Norena A J, Eggermont J J.
Changes in spontaneous neural activity immediately after an acoustic trauma: implications
for neural correlates of tinnitus.
Hear Res.
2003;
183
137-153
132
Plewnia C, Bartels M, Gerloff C.
Transient suppression of tinnitus by transcranial magnetic stimulation.
Ann Neurol.
2003;
53
263-266
133
Kleinjung T, Eichhammer P, Langguth B, Jacob P, Marienhagen J, Hajak G, Wolf S R,
Strutz J.
Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients
with chronic tinnitus.
Otolaryngol Head Neck Surg.
2005;
132
566-569
134
Langguth B, Eichhammer P, Wiegand R, Marienhegen J, Maenner P, Jacob P, Hajak G.
Neuronavigated rTMS in a patient with chronic tinnitus. Effects of 4 weeks treatment.
Neuroreport.
2003;
14
977-980
135
Hoffman R E, Boutros N N, Hu S, Berman R M, Krystal J H, Charney D S.
Transcranial magnetic stimulation and auditory hallucinations in schizophrenia.
Lancet.
2000;
355
1073-1075
136
Ji R R, Schlaepfer T E, Aizenman C D, Epstein C M, Qiu D, Huang J C, Rupp F.
Repetitive transcranial magnetic stimulation activates specific regions in rat brain.
Proc Natl Acad Sci U S A.
1998;
95
15635-15640
137
Muller M B, Toschi N, Kresse A E, Post A, Keck M E.
Long-term repetitive transcranial magnetic stimulation increases the expression of
brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine
mRNA in specific areas of rat brain.
Neuropsychopharmacology.
2000;
23
205-215
138
Keck M E, Welt T, Muller M B, Erhardt A, Ohl F, Toschi N, Holsboer F, Sillaber I.
Repetitive transcranial magnetic stimulation increases the release of dopamine in
the mesolimbic and mesostriatal system.
Neuropharmacology.
2002;
43
101-109
139
Valero-Cabre A, Payne B R, Rushmore J, Lomber S G, Pascual-Leone A.
Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic
brain activity: a 14C-2DG tracing study in the cat.
Exp Brain Res.
2005;
163
1-12
140
Wang H, Wang X, Scheich H.
LTD and LTP induced by transcranial magnetic stimulation in auditory cortex.
Neuroreport.
1996;
7
521-525
141
Stefan K, Kunesch E, Cohen L G, Benecke R, Classen J.
Induction of plasticity in the human motor cortex by paired associative stimulation.
Brain.
2000;
123
572-584
142
Classen J, Wolters A, Stefan K, Wycislo M, Sandbrink F, Schmidt A, Kunesch E.
Paired associative stimulation.
Suppl Clin Neurophysiol.
2004;
57
563-569
143
Ghabra M B, Hallett M, Wassermann E M.
Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement
in PD.
Neurology.
1999;
52
768-770
144 Sommer M, Tergau F, Paulus W.
TMS in hypokinetic movement disorders. In: George M, Belmaker RH (eds) Transcranial Magnetic Stimulation in Neuropsychiatry. Washington
DC; American Psychiatric Press 2000: 163-172
145
Bornke C, Schulte T, Przuntek H, Muller T.
Clinical effects of repetitive transcranial magnetic stimulation versus acute levodopa
challenge in Parkinson's disease.
J Neural Transm Suppl.
2004;
68
61-67
146
Dragasevic N, Potrebic A, Damjanovic A, Stefanova A, Kostic V S.
Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic
stimulation in depressed patients with Parkinson's disease: an open study.
Mov Disord.
2002;
17
528-532
147
Ikeguchi M, Touge T, Nishiyama Y, Takeuchi H, Kuriyama S, Ohkawa M.
Effects of successive repetitive transcranial magnetic stimulation on motor performances
and brain perfusion in idiopathic Parkinson's disease.
J Neurol Sci.
2003;
209
41-46
Prof. Dr. med. Hartwig Roman Siebner
Christian-Albrechts-Universität zu Kiel
Schittenhelmstraße 10
24105 Kiel
Email: h.siebner@neurologie.uni-kiel.de